- Detect lines in videos or images with Python and CV2
I wrote this script to take video and detect lines in the frames. Althought I wrote this so my robot could detect the edges of walls and baseboards within a room or hallway, it can be useful in lane detection for autonomous vehicles as well.
Gist: https://gist.github.com/jbnunn/7d8aa4e22dbf7cc48a017e863881fbcd
import os, sys
import cv2
import numpy as np
"""
Get source video, then:
1. Convert to grayscale
2. Gaussian blur
3. Detect edges
3a. Detect edges of a certain color
4. Transform edges to "lanes"
"""
resized_width = 400
resized_height = 300
def resize(image):
return cv2.resize(image, (resized_width,resized_height))
def process(video):
# Step 0: Setup Windows and resize input
blank = np.zeros(shape=(resized_width,resized_height,3))
cv2.imshow('resized',blank)
cv2.imshow('grayscale',blank)
cv2.imshow('blurred',blank)
cv2.imshow('masked',blank)
cv2.imshow('edges',blank)
# cv2.imshow('line_image', blank)
cv2.moveWindow('resized',0,0)
cv2.moveWindow('grayscale',410,0)
cv2.moveWindow('blurred',0,310)
cv2.moveWindow('masked',410,310)
cv2.moveWindow('edges',820,310)
# cv2.moveWindow('line_image',820,0)
# Step 1: Grab the source video
cap = cv2.VideoCapture(video)
total_lines = 0
while(cap.isOpened()):
_, original = cap.read()
if original is not None:
resized = resize(original)
line_image = np.zeros_like(resized)
# Convert to grayscale
grayscale = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
# Gaussian Blur
blurred = cv2.GaussianBlur(grayscale, (7,7), sigmaX=0)
# Detect only white edges
low_white = np.array([120,120,120])
high_white = np.array([200,200,200])
mask = cv2.inRange(resized, low_white, high_white)
# Detect Edges
edges = cv2.Canny(mask, 75, 100)
# Draw Lines
min_line_length = 10
max_line_gap = 50
rho = 1
theta = np.pi/180
threshold = 50
thickness = 5
lines = cv2.HoughLinesP(edges, rho=rho, theta=theta, threshold=threshold, minLineLength=min_line_length, maxLineGap=max_line_gap)
if lines is not None:
total_lines += len(lines)
print(total_lines)
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line.reshape(4)
cv2.line(resized,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imshow('resized', resized)
cv2.imshow('grayscale', grayscale)
cv2.imshow('blurred', blurred)
cv2.imshow('edges', edges)
cv2.imshow('masked', mask)
# cv2.imshow('line_image', line_image)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
print("Total lines found: ", total_lines)
def process_frame():
image = cv2.imread('frame.png')
edges = cv2.Canny(image, 75, 100)
# Draw Lines
min_line_length = 50
max_line_gap = 50
rho = 1
theta = np.pi/180
threshold = 50
thickness=5
lines = cv2.HoughLinesP(edges, rho, theta, threshold, min_line_length, max_line_gap)
if lines is not None:
print("Lines found: ", len(lines))
for line in lines:
x1, y1, x2, y2 = line.reshape(4)
cv2.line(image,(x1,y1),(x2,y2),(0,0,255),2)
while True:
cv2.imshow("image", image)
if cv2.waitKey(1) == ord('q'):
break
if __name__ == "__main__":
video = sys.argv[1]
process(video)